Например, если вы используете для оценки ансамбль нейронных сетей, где каждый элемент по отдельности оценивает что-то своё (рис. 13), то если, например к вам пришел человек, который работает в зарубежной компании, и статистических данных по финансовому состоянию этой самой компании у вас нет. Это риск. Вы же понимаете, что человек может работать как в хорошей компании, так и в шарашкиной конторе (вне зависимости от юрисдикции, включая оффшорные зоны). Соответственно, если на выходе нейронной сети или алгоритма вы получаете логические данные о финансовой устойчивости компании в виде +1 (устойчива), -1 (не устойчива), то зная что в условиях отсутствия данных ваша модель даст результат NULL, то вы можете поставить этому фактору значение риска -1 изначально.
Кандидат наук получает в разы МЕНЬШЕ, чем сварщик со средне специальным!!!!
Это я вам на опыте множества примеров говорю.
теоретически банки регулярно [за квартал] анализируют потери от невозврата кредитов по категориям заемщиков и выставляют новые критерии на минимум потерь
на практике вероятности рисков не калиброваны и для достижения этой цели применяются Bayesian Learning и пользователи могут оценивать риски в интервальном представлении вероятностей
;))
Если честно, такое решение очевидно в условиях оценки риска, как это делают в статьях. Когда риск оцениваются в промежутке с погрешностью шире маминой, как говорил мой начальник, то подобный подход неизбежен.
Статья топ! Приятно было читать. Все по-делу, интересно, все мысли которые у меня возникали по ходу прочтения вы плавно описывали в следующих обзацах.
Хотелось бы добавить еще крайне важный момент, возможно добавить как фичу - это умение зарабатывать деньги (другими словами выбираться из самых сложных ситуаций и быстро). Это очень сложный параметр, но если придумать как его грамотно считать, то вполне может быть выше точность на выходе. Например клиента (топ менеджера) увольняют из банка, человек умеет крутиться, он может очень быстро найти себя в чем-то другом и рисков гораздо меньше, чем если человек был устроен на высокую зарплату по "знакомству".
Вообще с биг датой вполне можно вычленять очень много данных по людям, прежде чем оценивать риски, тут влияют как финансовая грамотность клиента, так и человеческие факторы. Это тысячи различных фичей, а может и десятки тысяч.
Скоринговая модель должна оценивать не только вероятность возврата кредита (Тело+%),но и динамически рассчитывать сумму, при которой эта вероятность максимальна или диапазон размера кредита, при котором она допустима в заданном диапазоне вероятностей.
Если брать примитивные скоринговые модели, которые выходят на вероятности, то само собой это достижимая задача. Тот же первый пример с учётом логистической регрессии это позволяет сделать.
Проблема только в том, что такие подходы не позволяют всего остального с точки зрения бизнеса.
То, что говорите вы ведь можно рассчитать и через платежную дисциплину. То есть, варьируя параметрами можно выявить когда человек будет платить без задержек и просрочек.
И с точки зрения логики это и будет той самой нужной вам вероятностью, которая говорит о том, что кредит вернут.
То же самое можно сделать и для тела кредита.
Оперируя вероятностями вы не можете посчитать риск в абсолютном выражении. То есть, в долларах.
Приведу самый простой пример. Например, клиент с вероятностью 86% вернёт кредит. Это много или мало?? Сколько ему установить % ставку?? Или другой клиент, у которого вероятность 96%.
Допустим это максимальная вероятность возврата кредита на неком диапазоне условий.
Давайте рассуждать логически. Эта вероятность ведь не 100% в обоих случаях. То есть, риск есть. Но каков он по абсолютно величине??
И скоринговые модели основанные на вероятностном подходе не могут ОБОСНОВАННО назвать эту величину.
Да вы можете установить волевым решением и эмперически, что допустим каждый процент вероятности это +0,1% ставки по кредиту. Но у вас будет огромная погрешность, что будет выражаться в том, что вы к рассчетному риску для клиента будете вынуждены накинуть ещё риски банка.
И получается так что у вас итоговая процентная ставка это костыльная величина, которая уже благодаря тому, что банк не может адекватно посчитать риски перегружает клиента.
Если вы знаете достаточно точно риски в абсолютном выражении, если вы знаете сколько вы можете нагрузить клиента благодаря тому что сказали вы (при подборе параметров на определенных условиях) тогда вы можете адекватно взвесить риски по каждому клиенту и не перегружать остальных.
Вероятностный подход этого не даст.
Он просто не может ответить, сколько в валюте составляет риск, чтобы как минимум компенсировать издержки банка.