Нет единой версии правды: одинаковые метрики не сходятся в разных отчетах. Например, маркетологи оперируют веб-данными и считают оборот в Google Analytics, а отдел продаж смотрят оборот в 1С. И часто вот бывает, что отдел продаж приходит к маркетологу: «Почему у нас опять нет продаж?». А маркетолог показывает: «Вот же, смотрите у меня в гугл-аналитике, я сделал 5 миллионов». А в 1С отображается только 3 миллиона. Куда делись 2 миллиона? Где-то стоят разные фильтры, где-то не подгружаются какие-то данные, где-то информация по-разному интерпретируется. И никто не знает, кто прав.
Отрицание -> Злость -> Торг -> Депрессия -> Принятие :)
А если серьезно, то проблему локализовали и устранили. Больше миллионы не терялись.
Я правильно понял, что вы предлагаете решить проблему различающихся данных в прикладных системах, и для этого хотите поставить еще одну систему рядом, не пытаясь исправить сами прикладные системы?
Алексей, не совсем.
Мы не ставим еще одну систему рядом, а строим инструмент, агрегирующий данные из различных источников поверх этих систем.
Сами прикладные системы не всегда есть возможность исправить. Например, вряд ли вы будете исправлять google adwords или откажитесь от него из-за некачественно передаваемых данных.
Кроме того проблемы в прикладных системах иногда становятся явными только на этапе работы сырыми данными. Например, клиент ориентируется на данные по транзакциям из google analytics при планировании рекламного бюджета. И только на этапе объединения данных он обнаруживает, что GA не корректно собирает данные из мобильного приложения.
Интересный инструмент! А в плане технологий можно что-то другое использовать по вашему опыту? Например, если у компании нет контракта микрософт, но очень популярен гугл или яндекс внутри
Павел, для построения olap кубов можно использовать технологии oracle или других менее известных вендоров. В качестве хранилища можно использовать BigQuery или ClickHouse (если в компании популярны продукты Google или Яндекса).
Однако, основная проблема наступает на этапе состыковки данных хранилища с инструментами аналитика (а это чаще всего excel).
Преимущество OLAP кубов на Microsoft в том, что они нативно соединяются с MS Excel и Power BI.
Интересно, что стало с теми людьми, у которых пропало "десяток миллионов" :D
Когда ожидать малому бизнесу доступности таких решений в виде SaaS?